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J. Phys. A:  Gen. Phys. Vol. 5, August 1972. Printed in Great Britain. 0 1972. 

The velocity distribution functiOn for a polymer chain 

S F EDWARDS and A G GOODYEAR 
Theoretical Physics Department, The Schuster Laboratory, University of Manchester, 
Manchester M13 9PL, UK 

MS received 15 January 1972 

Abstract. The Gibbs distribution for a polymer molecule contains implicitly the correlation 
functions for velocity and position of the constituent monomers. The purely spatial part, 
ignoring potentials, gives the random flight distribution ; in this paper the velocity correla- 
tion function is calculated, exploiting the markovian structure of the problem in phase 
space. I t  is shown that the problem can be reduced to an eigenfunction problem and hence 
solved. The form of the correlation function is quite accurately given by 

(U“,- u,JZ = (ZkT/m){l-exp(-cln,-n,l)) 

where u n I ,  un2 are the velocities of the n,th and n,th monomers and c 1. 

1. Introduction 

This paper concerns several points of interest which arise when calculating the distribu- 
tion function of a polymer which can be represented without loss of generality, by a 
chain of rigid rods. In order to investigate the dynamics of a polymer molecule a model 
was constructed (Edwards and Goodyear 1972, hereafter called I). The model is shown 
in figure 1. The Gibbs distribution for this problem in the absence of potentials is 
discussed in I. In the case of the discrete rods shown in figure 1 the distribution function 
is 

passing into the continuous limit gives 

feq = n 6(r’(s) . U@)) n S(r’Z(s) - 1) 6 E -- u2(s)- 
S S ( 3 4”1 

(1.la) 

( l . lb) 

Figure 1. 
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It was shown that this distribution function is the solution of a Fokker-Planck equation 

{ $+ s ~ ( o ) ~  a d o  
ml 

this equation being derived from a stochastic Liouville equation 

F represents the force experienced by one point on the chain due to interactions with 
its surroundings. It is to be noted that this force has a systematic as well as a random 
component, and it is the random part which gives rise to the diffusion. 

This paper concerns three main observations, one of which was noted in I. The 
points are as follows : 

(i) The total energy of the chain drops from $NkT to 3NkT. This is caused by 
the constraint S(r’(s) . u’(s)) acting on each link. 

(ii) The velocity correlation function is not strictly a 6 function on the length of 
the chain. It would seem to go like 1 -exp( -cq). 

(iii) The effect of the constraint S(r’(s) . U@)) does not destroy the independence of 
the r and U distribution. 

2. Integral equation for the chain 

We shall give a short summary of the facts as presented in I. The kinetic energy of the 
chain is 

E = JEmi. , ’  
n 

and the Lagrangian of the chain (including the constraint) 

L = f ~ m i . , 2 + ) ~ p n ( ( r n - r n _ l ) 2 - 1 2 } .  
n n 

The pn are Lagrange multipliers used to include the constraint 

(rn-rn-l)2 = 1’. (2.3) 
The Lagrange equations of motion for the pn were derived, and used to obtain the 
stochastic Liouville equation (1.3). It was shown how a Fokker-Planck equation could 
then be derived (1.2). The solution of the equation was shown as 

f,, = n 6(r’(s) . u‘(s)) n 6(r’2(s) - 1) 6 
n n 

Now we can use this distribution function to calculate the free energy 

(2.4) 
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change variables 

r, --* (rn-r,,-l) = tn 

then since the angle between t ,  and ( U ” - U ~ - ~ )  does not appear other than in 
6 { ( ~ ,  - r,- 1) . (U, - U,- J} one may replace it by its angular integrated average 

exp( - H / k T )  
expi-&) = J n  6(t, - a )  n dr, dun. 

n Iun--Vn-11 n 

We may simplify this further by integrating out the t ,  leaving only an integral 
equation for the v, .  

In future we shall call the constant A 
The form of this integral equation allows the integration process to be performed 

in steps. The process is markovian and therefore dependent only on the conditions at 
the previous link. 

Consider the integration at the nth link. 

(n-1) t h  point 
point 

In this expression M(u,+ U,) represents a transfer matrix and C, contains the 
contributions of the previous n integrations. Hence M is the effect of the (n+ 1)th link. 
After n links we find 

and 

4 n +  1(un+ 1) = 1 ~ ( u n +  1, Un)4n(Un) dun. (2.10) 

It is this integral equation which we shall use to evaluate the total energy. To solve 
this equation we define functions 

(2.1 1) 

(2.12) 
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By using the identity 

1 vt- = -4n6(u-0) 
Iu--I 

we are able to transform (2.13) into a partial differential equation 

V2 exp - $(u)+4nA exp -- $(U) = 0 (E;) ( z;) 
(YZ) 

and if we write 

Y = exp - $ 

the equation becomes 

{ V2+4nA exp( -g)) = 0 

which resembles a Schrodinger equation 

(V’+Q(U)-E)Y(U)  = 0. (2.16) 

If we vary the strength of the potential A we shall cause the magnitudes of the 
eigenvalues to vary. As A is varied the eigenvalues in turn pass through zero. Thus 
there will be a lowest value A,, which makes the lowest eigenvalue E = 0 (s wave), 
then for a deeper well there will be an A I  which makes the next highest state (or usually 
states, because of degeneracy in angle) have eigenvalue zero. 

1191 

(2.13) 

(2.14) 

(2.15) 

Hence there are a set of states Yn,  and A values A,  corresponding to the zero eigen- 
value. We can show that these states obey the usual orthogonality conditions. Thus 
multiplying equation (2.15) by Y,, and the similar equation in E ,  by Y,: 

(A,  - A,) 1 exp( -g) Y,Y, du = 0 # B. (2.17) 

1 exp( - g ) Y , Y ,  dtr = 0 

du = 0. s (2.18) 



1192 S F Edwards and A G Goodyear 

All the states are real, so one does not need $*, Y*.  At this point one can see the general 
solution, for at any given point U,, there is a probability distribution 

3. The total energy of the chain 

Consider for a moment the expression 

(2.19) 

(2.20) 

(2.21) 

(2.22) 

(2.23) 

The dimensions of the integral are of order v Z N ,  that is, E” 

exp( -&) - (kT)N x constants. 

F - -NkTlnkT (3.2) 

and thus we find U = NkT as against the value of 3NkT for N unconnected points. 
Clearly the effect of the constraint is to lose of the internal degrees of freedom of the 
chain. 

We shall prove this in a more rigorous form by using the $ formalism. Whatever 
the initial distribution the value of 4 must settle down to be a multiple of since the 
factor exp(- cop)  will dominate relative to exp( - €9) as p becomes large. 

The mean kinetic energy at any point (&mu$) is 

3mJ uz#i(u) d3u - i m J  uzYi  exp( - muz/2kT) d3u - 
J *;(U, d3U J ‘Pi exp( - mu2/2kT) d3u (3.3) 

But Y o  satisfies a Rayleigh-Ritz principle (see Landau and Lifshitz 1965). 

(3.4) 
- J (VyIo)z d3u - 4nAo J Yi exp( - mu2/2kT) d3u 

J exp( - mu2/2kT) d3u 

Now the variational principle requires 6E = 0 and the definition of A. requires E = 0. 

E =  
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Redefine A.  as ao/T and E = c/T. By varying with respect to T we can prove that 

-- T 2  6E = 0 = O+ao6T ( - iz 1 Ygexp ( -- r;i)d3u -$1$Y; exp( -$) d’u) 

This implies 

& 1 exp( -$) d’u = 1 Yg exp( -$) d3u 

t3.5) 

4. Velocity correlation along the chain 

We can calculate the velocity correlation between two points on the chain using the 
I(/ formalism. The power of this method lies in the fact that it avoids the difficult 
integrals caused by the constraint 

n S(r’(s) . u’(s)). 
s 

The total distribution function for the chain can be represented by integrating the 
M over the whole length of the chain 

I.. .$ M . . . Mu,.M.. . M u ~ M . .  . M n,, dun 
< unum ) = J...JM...MlM...MlM...Mn,dv, * 

We shall use the II/ representation of M 

which gives the total energy of the chain. 
By saying n = m we are implying no velocity correlation between links of the 

polymer. If, however, there is a correlation then we can more easily observe the 
distribution by Fourier transforming with respect to length. 
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Let In-ml = s 

. (4.6) lvo.I2ko - 6,) 

a ; (CO - €J2 + o2 
Iu(w)12 = 5 1 luou12 exp{(r,-E,)ln-ml+ios} ds = 

Note that integration over the o variable gives kT as the total energy of the chain. 
To examine this distribution we need to find values for c0 and e,. In order to do 

this we must solve a nonstandard Schrodinger equation (2.15). The eigenvalues of 
square-box and harmonic-well potentials are given in standard texts (eg Landau and 
Lifshitz 1965). 

For low values of potentials, the eigenvalues of the potentials are not too dependent 
on the exact shape of the potential. For this reason we can solve our equation by 
expanding the exponential and treating the equation as an harmonic oscillator equation 

The solution occurs when 

2nA, = (nl+n2+n3++) ~ (2zAu1 l i 2  

where n, , n2 ,  n3 are integers. This implies 

m 
2nkT 

A ,  = ----(n,+n2+n3+32 (4.9) 

We shall assume that we only need the first two eigenvalues I(/o and 11/, = qb0; 
hence only the U = 1 term survives. The ratio of the two values 

(4.10) 

and 

I u ~ ~ ~ ~  = 1 ~ ~ ~ 1 ~  = kT. 

Therefore 

(u,u,) = kTexp{ -ln(25/9)Jm-nl} 

and 

( (u , -uJ2)  = 2kT[1 -exp{ -ln(25/9)lm-nl}l. (4.1 1) 

Although actual results depend on the exact solution of equation (2.15), these 
approximate results give a clear indication of what happens. It is interesting to note 
1n(25/9) - 1 so that the correlation of velocities of points 4 steps apart goes like 
1 - exp( - 4 )  and this function dies quickly and dimensionlessly. We are able to redefine 
the step length of the chain in order to reduce the correlation between the redefined ‘links’. 

5. The interdependence of the spatial and velocity correlations 

It remains to be shown that the constraint n, S(r’(s) . U+)) does not destroy the 
independence of the spatial and velocity correlations. One can easily generalize the 
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kernel M to 

4 ( r n  - rn-  I), On+ 1 un). 

J W 9  I f ,  + 1 9 0,). 

a(k)M(a,+ 1 9 0") 

We shall effect the solution by Fourier transform on the r variable 

This kernel can be separated as 

and the generalization of equation (2.12) 

t+ba(u) = I A; '(k)a(k)M(u'u)$,(u') du' ( 5 4  

which implies 

1195 

(5.1) 

(5.3) 

Hence it is that the probability of finding r, = R and r, = R' separates from the 
U dependence completely, and yields a"-,(k). Back Fourier transformation of this 
distribution gives the spatial distribution independently of the velocity distribution. 

6. Conclusions 

This paper grew out of several mathematical points concerning a model of a polymer 
molecule as suggested in I. The formalism used to solve these problems is especially 
suggestive to the solution of other problems of macromolecules. 

It is hoped that this paper illustrates some interesting new results about statistical 
mechanics of systems with constraints as opposed to the statistical mechanics of points. 
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